BLUEWIND

INNOVATIONS

Sustainable and Circular Product Development Charter

2025

Sustainable and Circular Product Development Charter

"At BlueWind, we believe engineering for the planet means designing beyond the product—into its materials, its lifecycle, its future."

1. Purpose

This charter outlines BlueWind's commitment to integrating **circular economy** and **sustainable product design** principles into every stage of our design, development, and deployment processes.

2. Design Philosophy

We follow a holistic product strategy where:

- Every product is designed for efficiency, longevity, and evolution
- Every component is considered for reuse, recovery, and recyclability
- Every material and process respects environmental, human, and financial impact

3. Guiding Principles

General Circular Design Guidelines

BlueWind adopts the following **general design guidelines** for every product:

- Uses environmentally friendly materials
- Minimizes material content and wastage
- Employs **low-impact manufacturing** processes that reduce environmental and social harm
- Is **energy efficient during use**, minimizing carbon emissions
- Is durable, long-lasting, and designed for real-world reliability
- Can be **upgraded** easily to extend its useful life
- Can be **repaired** easily, preferably by the owner/user
- Can be **disassembled** easily for reuse, recycling, or composting

Adapted from "Creatainable Product Innovation" by Danisch Dafinsiad

Adapted from "Sustainable Product Innovation" by Dariush Rafinejad

4. Design for the Environment (DfE)

As inspired by **DfE methodology**, we focus on:

4.1. Dematerialization

- Reduce material usage without performance compromise
- Lightweighting, compactness, digitalization
- Use of recycled or renewable materials

4.2. Detoxification

- Eliminate toxic materials and hazardous processes
- Prioritize biodegradable, low-VOC, non-toxic inputs
- Favor water-based, safe processing routes

4.3. Revalorization

- Maximize recoverable value at EOL via:
 - Recycling
 - Composting
 - Ease of disassembly
 - o Material tagging for recovery

5. Design for Long Life

5.1. Performance

- Ensure consistent airflow, efficiency, and operational output over the product lifecycle
- Meet rigorous industrial use-case specifications

5.2. Reliability

- Design for high uptime with minimal failures or maintenance interruptions
- Use predictive failure models and design margining

5.3. Durability

- Withstand mechanical stress, corrosion, temperature, and vibration
- Exceed minimum industrial lifecycle expectations (e.g. 10+ years)

5.4. Quality

- Maintain quality through ISO standards, testing protocols, and material controls
- Built-in QA loops at design, prototyping, and production stages

6. Repair and Reuse

- Enable **customer-level repairs** via guides, replaceable parts, QR codes
- Offer BlueWind repair service plans for industrial clients
- Provide **component reuse guidelines** for R&D or service reuse
- Ensure critical parts (e.g. motors, controllers) are **replaceable**

7. Modularity and Upgradeability

- Design systems as **functional modules** (e.g. blade, motor, controller, mount)
- Allow **selective upgrades** (e.g. smart controller, motor efficiency improvements)
- Backward compatibility where feasible (e.g. V1 housing compatible with V2 motor)
- Modular **packaging and logistics** for circular reverse flows

8. End-of-Life (EOL) Circular Pathways

Each product must be designed to support one or more of the following EOL strategies:

- **Refurbishment**: Restore for resale/use
- **Remanufacturing**: Rebuilding with reused components
- **Recycling**: Break down into material streams
- **Composting**: If materials allow, designed to biodegrade

9. Material Strategy & Supply Chain

- Prioritize:
 - o Recycled and renewable materials

- o Low-impact, non-toxic, local sources
- Suppliers must comply with circularity and traceability criteria
- Promote design-for-sourcing resilience

10. Economic Viability

Assess and validate each product's:

- Total Cost of Ownership (TCO)
- Net Present Value (NPV)
- Internal Rate of Return (IRR)
- Payback Period
- Support circular business models (e.g., leasing, subscription)

10. Lifecycle Integration

We integrate sustainability at every product lifecycle stage:

Stage	Considerations
Materials	Sustainable sourcing, low-impact inputs
Manufacturing	Lean processes, waste minimization, safe chemicals
Assembly	Easy disassembly, minimal fasteners/glues
Distribution	Compact packaging, efficient transport
Usage	Energy efficiency, remote monitoring, maintainability
Maintenance	Repair-friendly, spare parts strategy
EOL & Return	Reverse logistics, recycling/refurb pathways

11. Internal Charter Checklist

Before release, each BlueWind product must:

- Align with **General Guidelines**
- Use recyclable or compostable materials wherever possible
- Include modular and disassemblable construction
- Provide disassembly, repair documentation and spare parts plan
- Document **EOL strategy** (refurbish/recycle/compost)

- Complete economic assessment (TCO, IRR, NPV)
- Document materials and supplier circularity credentials
- Offer data for continuous LCA and circularity score tracking

12. Ongoing Commitment

BlueWind regularly:

- Conducts product circularity audits
- Publishes key metrics in **sustainability reports**
- Educates employees and customers about circular product stewardship

"At BlueWind, sustainability is not a feature—it's our engineering philosophy."